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March 22, 1993

Professor Feynman,

This is not for review; just for your amusement. As
a former student of yours at Tech in the 50's T thought
this interpretation might tickle you. I'm going to submit

this to the Am. J. Phys. when I get the figures neatified.

RICHARD C. HEYSER
MEMBER TECHNICAL STAFF
INFORMATION SYSTEMS AND RESEARCH

SECTION

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
4800 OAK GROVE DR./PASADENA, CALIF.
91103
(213) 354-2503
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Abstract. Quantum mechanical descriptions in terms of
momentum and position are identified as alternatives under the
condition of equal complex-valued Lebesgue square integrability.
While this does not change any of the formal results obtained in
quantum mechanics, it does shed a different interpretive light
on the steps that lead up to these results. Instead of being
independent, even in concept, momentum and position are
identified as being the same thing, merely seen from different
views. Neither is required to complement the descriptive
capability of the other, since each forms a complete alternative
in its own right. Apparent complementarity, as well as mutual
indeterminacy of codescription, comes about whenever an attempt
is made to overlap these two descriptions to form a third
codescription which tries to maintain both the terminology and
the net integration values of the separate alternatives.
Noncommutation of associated operators is a direct consequence
of the alternative nature of momentum and position, and the local
to global character of the particular map between these alternatives
leads to an apparent point-wave duality in their descriptions. It
is suggested that challenges to the contemporary interpretation of
quantum theory should begin with the assumptions that lead to

its formulation involving alternative representations.
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INTRODUCTION

In the early development of quantum mechanics, a great deal
of concern was expressed over the failure of certain matrices and

}’2’3 In an attempt to understand the

operators to commute
significance of this noncommutativity, Heisenberg was led to an
analysis which disclosed a relationship of mutual indeterminacy
between 'cheml.1 Subsequently known as the Uncertainty Principle,
this failure of coprecision has been a continuing source of great
anguish in both practical science and philosophical thinking.

The mathematical expression of the Uncertainty Principle
would seem to lie at the heart of this anguish. Heisenberg
suggested that this expression arose because of the inescapable
disturbance which any observation must cause to that which is
observed, and that it established the mathematical limits of
coprecision caused by observation of such complementary properties‘.l’

Even before Heisenberg developed this famous relation, Bohr
was concerned about the inextricable involvement of certain
complementary properties in physical description, such as particles
and waves. An entity could apparently be wavelike under one
set of circumstance, and particlelike under another. Each
complemented the other, yet both seemed necessary for a complete
description of observed reality. To Bohr, the uncertainty
relations not only provided a mathematical justification for the known
complementary properties, but seemed to introduce complementarity
as a fundamental concept that was intimately involved with the
process of observation.

The inevitable consequence of interpreting the uncertainty
relations as due to the process of observation, and through it

complementarity of noncommuting descriptors, leads to certain
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difficulties with causation and the influence of the observer. The
literature is rich in discussions of this matter§’7’8’9’10 Furthermore,
every effort at dislodging these disturbing consequences is directed
either at finding a flaw in the uncertainty relations themselves, or
suggesting that they represent an incompleteness in descriptions

of quantum phenomena. Yet, the uncertainty relations remain
unshaken even under the most vigorous onslaught.

My own work on quite another subject, analysis of the problem
of reconciling subjective perception of sound with objective measures
of the ingredients of that perception, has led me to a geometric
structure which parallels the interpretive aspects of quantum
mechanics. In this correspondence, I will describe one aspect of
my work as it relates to the interpretation of quantum theory and
describe what I believe to be a reasonable explanation of what, up
to now, has seemed mysterious in that theory. This interpretation
leaves the formalism of quantum mechanics, including the uncertainty
relations and everything that follows from them, completely intact.
But by directing attention to the previously unquestioned
procedures which led up to the uncertainty relations, sheds a
different interpretive light on them and on the noncommutation

of observables.
BACKGROUND

There are several key steps in the development of quantum
mechanics which should be considered, not to question their wvalidity,
but for the support they provide for the concept which I wish to
introduce in this correspondence.

It was recognized very early in the development of quantum
theory that certain pairs of entities did not commute in the order
of their application. This appears not only in the matrix

formulation of Heisenberg, but as an operator notation in
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Schroedinger's wave formulation and as special numbers in Dirac's
theory. An excellent presentation of the early development of this
noncommutating relation can be found in Van der Waerden}1
Nonvanishing of the commutator of certain pairs of operators or

of their equivalent matrices was clearly identified with quantum
behavior, since this is not a characteristic of their classic physics
counterparts. Contemporary discussions of the significance of the
commutators of operators goes far beyond the realm of quantum

D
mechanics,

but still does not attach any particular significance to
the relationship between noncommutating pairs of operators.
Investigating the question of whether or not the formal
structure of quantum mechanics allowed for the determination of
the properties signified by such noncommutating enties, Heisenberg
resorted to the Dirac-Jordan transformation theory‘.l’6 This theory
relates the description of position and momentum through the Fourier
transform. The state function in terms of the position coordinate
is the Fourier transform of the state function in terms of the
momentum coordinate. Heisenberg assumed a Gaussian position
distribution and obtained a Gaussian momentum distribution. He
noted that there is an inverse spread in these distributions such
that their product is a constant. It was immediately obvious that
a state function could not be indefinitely narrowly distributed in
both position and momentum. In order to understand why
momentum and position could not be codetermined with indefinite
precision, Heisenberg proposed the now famous '"gamma ray
microscope"” thought experiment. No attempt was made to
question the steps which gave the result; instead, it was the result
itself which was scrutinized. In attempting to explain the result
that came from the Fourier transform relation, the thought
experiment suggested that it was a consequence of a disturbance
in momentum caused by the attempt to observe position. Although

there were subsequent epistemological modifications to this
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interpretatimll:f’14 the mutual indeterminacy which these results
implied still remains associated with the process of observation.
Subsequent derivations of this mutual indeterminacy showed it to
be directly related to the commutator of Hermitian operators.15
Thus, mutual indeterminacy of pairs of descriptors is intimately
linked with their commutator.

Another indication of the mathematical link between position
and momentum is available in the formal procedure used in the
wave function formulation. The quantum mechanical representation
of the cartesian component of linear momentum can be clearly
identified as the Fourier transform of the associated cartesian
coordinate}6 That, however, is not the identification traditionally
presented to students of the theory. Instead, the associated
operator notations are presented as rules to be used without
comment.

Another indicator which, I contend, supports the concept I
wish to introduce is provided by the apparent mutual relationship
which exists between certain pairs of descriptive entities. In
classic physics, the dual role played between a point (or particle,
or corpuscular) description and the wave description is evident
as far back as Newton's corpuscular theory of light and Huyghen's
wave theory of light. Fermat's Principle of Least Time derives
from the undulatory theory, while Maupertuis' Principle of Least
Action was discovered through investigations on Newton's
corpuscular theory of light!‘7

This dual nature of light played a significant part in the
development of the early quantum theory. De Broglie shbowed. a
wave aspect of matter, and Schroedinger's formulation of the
theory has clear roots in classical wave theory}8 Heisenberg's
famous thought experiment, which he formulated with regard to
the indeterminacy relations, demonstrated an inextricable
involvement of position and momentum with the point-wave aspects

of the observation process.
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Bohr considered such mutual behavior to be in the true nature
of things as expressed by his concept of complementarity.
Precisely what complementarity means is somewhat open to question,
since Bohr was less than explicit in its description, but there are

9.’14’19 A general

a number of excellent discussions on this subjec
interpretation of complementarity is that a complete description

of a physical process requires pairs of entities which have the
intrinsic property that any attempt to define one of them to
increasing certainty must lead to a corresponding uncertainty in
the other.

There are thus three indicators of the interdependence of
the quantum mechanics entities which are known as momentum and
position: their nonvanishing commutator, the Fourier transform
notation of their representations, and the apparent complementary
nature of their description. I contend that they all imply the
same consequence: momentum and position are the same thing,
seen through different frames of reference. They are alternative

representations of each other; a contention I now hope to show.
ALTERNATIVES

In dealing with what were obviously different ways of
describing the same phenomenon, my own work led me to consider
that there could always be alternative descriptions. If one observer
has a particular description of a process or event, then that
description could never be privileged in the sense that there can
be no other possible way of describing the same thing. It
should, in principle, be possible to map that observer's frame of
reference, with all its structural rules, into alternative frames of
reference, either of the same dimensional basis or, in the case of
sound perception, into bases of different dimensionality. This I

called a Principle of Alternative%? Observers in each of these
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alternatives should see the same event acting as if it belonged
solely to that observer's frame of reference. This concept
identifies transformation as a process of mapping between
functional alternatives under a defined set of conditions. If
there is a valid functional representation f which is expressed

in a frame of reference x, then there will exist maps m which
can transform this f(x) into equally valid representations in
terms of alternative frames of reference. These representations,
which are equally valid under a defined set of conditions C, will
be said to constitute a set of alternatives under conditions C.

In the case of linear signal analysis, as well as quantum
mechanies, the condition of complex-valued Lebesgue square
summability, in which the representations are of class L2?, defines
a particularly useful set of alternativeg} This can be used to
represent either conservation of energy, or conservation of
probability in the descriptions. Since total content, expressed
through LZ?, is the only conserved property, such alternatives
may exist at different dimensionalities and different units of
expression.

If the geometry of representation is Euclidean, then such
functional representations define a Hilbert space‘.22 Since an
N-dimensional Riemannian representation can be mapped to a
Euclidean representation of 2N(N + 1)—dimension§(,)»’23 these
alternatives suffice to represent both classes of geometry. The
terms transformation, mapping, function and operator are often
used in the same context. In this correspondence, I shall use
them to mean a procedure by which a defined entity under one
set of representation may be converted to another representational

form.
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THE FOURIER TRANSFORM

Let us begin by considering the Fourier transform as it defines
a map between functional alternatives. In N-dimensional space, the

complex-valued Fourier transform has the expression,

g(o) = (1/a]1/Nfexp{i<o,s>}f(s) ds, )
S

where <g,s> is the zero curvature hyperplane, expressed through

the inner product relation,

<g,8> = 0s + 08 + e+ + (0.S 2

a is a normalizing constant, ds is the Lebesgue measure and

integration is taken over the whole of space s. This is a map
of the form?0
g(g) = [m(g,x) f(x) dx, (3)
X
where § =& ,§ , ¢+ & and X = X X 5 Ve X, This
1 2 M 1 2 N

transforms an expression f, in frame of reference x, into an
alternative expression g in a different frame of reference &.

The mapping kernel m(&,x) expresses certain parameters ¢ in
terms of frame of reference x. The product of this mapping
kernel with any measurable f(x) results in a distribution over the
whole of space x whose net Lebesgue sum over x leaves a
representation in terms of parameters ¢&.

If f is of class L2,

JIfx) |2 dx < =, (4
X

and if mapping kernel m(&,x) preserves total Lebesgue measure,

then g is also of class L%, and

[lge) |2 dg = [lf(x)]? ax. (5)
£

X
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In that case, the transform (3) is an isomorphism of L% onto
L2 which preserves total measure and maps space x, of dimension
N, onto space £ of dimension M, where N may be the same or
different than M.

The mapping kernel identifies the way in which coordinates
£ will appear in space x. The parameters & become the coordinates
of the transformed expression. Representations g(&) and f(x)
are L? alternatives under the map m(&,x).

In this conception, the Fourier transform can be identified
as a particular map which joins two classes of alternative. In
geometric terms, the Fourier transform is a map between alternatives
of the same dimensionality. The Fourier transform provides an
alternative view of the same entity in the same number of dimensions
but in a different frame of reference. Its mapping kernal causes
a pairwise coordinate alignment such that functional dependence
along the ith coordinate in s, s,, is mapped to functional
dependence only along the ith cloordinate in o, 0 where alternative
coordinates s and o have inverse units of expression.

The Fourier transform on L? is a one-to-one norm preserving
map (Parseval's equation) of L? onto LZ. It preserves inner
products, thus is unitary. In this regard a Fourier transform
defines an isomorphism of the Hilbert space onto itself. By virtue
of this property, the Fourier transform preserves geometry and
maps a Euclidean geometric structure in s into a Euclidean geometric

structure in o, and conversely.
INDETERMINACY DUE TO COMBINING ALTERNATIVES

Most of us get so involved in the machinery by which
mathematical expressions are manipulated that we tend to overlook
the meaning of those expressions. When an expression involves

an equal sign, we must recognize what this sign means. An equal
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sign clearly separates two entities which are to be interpreted
as equivalent to each other under some agreed set of conditions.
In the equation which identifies the Fourier transform, the
representation g(o) must be the same thing as the expression on
the opposite side of the equal sign. This is so fundamental that
it should require no comment, but failure to recognize its
significance has, in my opinion, led to a tragic error of interpretation
in physics.
The equal sign clearly signifies that the entity f(s) under

the procedure
(1/a]1/Nfexp{i<o,s>}(') ds (6)
s

is equal to the entity g(o) everywhere except over sets of Lebesgue
measure zero. This means that if f(s) describes something which
has Lebesgue measure and is of class L%, then g(o) is an alternative
description of the same thing with the same total L? summed measure.
The frame of reference s and the frame of reference ¢ are not, and
cannot be, independent since each is precisely mappable into the
other under the rule which the equation sets out. The fact that
there is an equation should supply the clue that these entities and
their frames of reference could never be independent.

The Fourier procedure identifies not only the way in which
each elemental point in s appears as a description in o, but the
tradeoff between regions of confinement of the same L2? summation
in s and o. A simple manipulation shows that the hyperplane
kernel causes a mutual inverse spreading between the region of
confinement of measure for a particular description along s; and
the corresponding region of confinement for the alternative
description along g For a clustered distribution, such as the

Gaussian, the Fourier procedure results in the well-known relation,
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As, Aoj > § (Sij , &)
where 6ij is the Kronecker delta, which is unity if the indices i and
j are alike and zero otherwise, and A stands for the effective width of
the region of confinement of the net L? summation over the range of
the whole coordinate. It is clear that the Gaussian distribution
leads to the smallest product of A's. Other distributions will
lead to products of mutual spreading which are larger than that
for the Gaussian. Thus the inference that the regions of spreading
are inversely related through a fixed constant is not strictly
correct for clustered distributions in general.

A representation in s and a representation in ¢ are descriptions
of the same thing as seen from these different frames of reference.
That part of the representation confined to region Asi in frame of
reference s is confined to region Aoi in alternative frame of
reference o. The narrower one makes Asi, the broader becomes
Aoi, in conformity with relation (7). If one attempts to form a
third description in terms of both s and o, then that part of
this joint description whose L2 sum is confined to Asi must
also be confined to Aoi if the net L2 sum of this codescription
is to be maintained at the same value as that for the separate
descriptions. In the large, where descriptive variations are
coarse, it might appear that s and o can be independent attributes
in this third codescription. But as one refines the description,
the true alternative nature of s and o will make itself felt as an
irreducible indeterminacy of codescriptions in L2. In quantum
mechanics, the squared magnitude of the wave function is
interpreted as probability, whose net L? sum must be unity
whether for single or codescriptive applications. The associated
quantum mechanical mapping kernel involves the hyperplane

<p,q> divided by the constant factor h/2m. The Heisenberg
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indeterminacy relations of quantum mechanics can thus be directly
identified with this process, and the limiting indeterminacy in p
and q becomes %(h/2ﬂ)<§i]., as it must be. The simplified
notation K is not used here in order to bring out the role of
Planck's constant as a normalizing coefficient in a hyperplane
angle relationship with p and q.

The hyperplane kernel also establishes the relation that

each elemental point S, in s is mapped to appear as a corresponding

distribution
exp {i<o,so>} (8)
in the alternative frame of reference. This distribution is a wave.

There is a point-wave alternative relationship between coordinates
s and o0, and on any representations expressed in these coordinates.
Attempting to form a third description by combining both s and o
will lead to an interpretation that this third description has both a
placelike property and a wavelike property which coexist in a
most unusual manner. Each will seem necessary in order to form
a complete description (in terms of both s and o), yet attempts
to obtain greater accuracy in the determination of either of them
seems to result in a loss of precision in the other. Furthermore,
interpretations of the same process can either be more placelike or
more wavelike, depending upon the choice of coordinate emphasis.
Indeterminacy, apparent complementarity and point-wave
duality result from attempting to combine alternative representations
into a common overlap view. These things are the penalty that
must be paid in order to maintain both the terminology and the net
L? value of the separate alternatives. We will next see that
alternative operational procedures also impose constraints on

their use when applied in a common frame of reference. In
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particular, the famous noncommutation of certain operators is a

consequence of their alternative relationship.
NONCOMMUTING OF OPERATORS

The general mapping procedure establishes the way in which
an operation R in a frame of reference x will appear as an equivalent
operation S in the alternative frame of reference ¢£. If a
representation f is mapped to an alternative representation g under

the map m, then, in operator notation,
m[f] = g. 9)

In order to specify that g is a valid alternative to f, and in
particular that there is nothing contained in f that does not appear
in g, there must exist another map n by which f can be recovered

from g everywhere (except over sets of measure zero). That is,

n[g] = nm[f] = f. (10)
Since successive maps m and n recover the original form,

nm = mn = I. (11)

The relationships are symbolized in the mapping diagram of Figure 1.
If there is an operation R in the space of f which corresponds
to an operation S in the m-transform space of g, then there are

two ways in which an f may be carried into a form S[g], namely,
mR[f] = S[g] = Sm[f]. : (12)
An operator equivalence relation on any measurable f is thus,

mR = Sm. (13)



Richard C. Heyser
Page 15

This can be cast into the following equivalence relationships for

alternative operators:

= nSm
S = mRn. (14)

These relationships can be readily verified for the case where
m is the Fourier transform and R and S are transform equivalent

operations, such as,
R = 8/2)si ; § = ig. (15)

Relation (14) is an operational statement that S is the m-transform
equivalent of R, while R is the n-transform equivalent of S, as
defined under relation (11). Operational procedures R and S may
be applied in the same frame of reference. The question to be
answered is: does S followed by R yield the same result as R
followed by S, when S and R are related to each other by (14)?
The answer is, no, the two sequences do not give the same result.
R and S do not commute. The underlying reason for this failure
to commute lies in the difference between the procedures of
operation and transformation between alternative forms. An
operation produces a different version of the operand, which is
expressed in the same frame of reference; whereas, transformation
between alternative forms is a map to a distinctly different frame
of reference. Any mapping diagram, such as Figure 1, must
take this into account. One can, in some measure, use the
same coordinate basis to compare the initial and final versions of
an operational procedure, while there is no way to compare transform
alternatives in a common frame of reference. That is, in fact, the
reason for the indeterminacy of form that results when attempting
to combine alternatives into a common descriptive basis.
Differentiation, multiplying by a monomial and convolution are

examples of operations; while the Fourier transform is an example
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of a transformation between alternatives. Because of this
difference, the procedures of transformation between alternative
representations and operation do not commute. This can be
seen from the mapping diagram of figure 1 where, if g is a valid

alternative to f under map m, then for any R,
mR # Rm. (16)

It will now be shown how this causes the noncommutation of R and S.
The sequential procedures of S followed by R and R followed by

S can be written in terms of one operation only, say S, as follows:

RSI[f] nSmS[f]
SRI[f] SnSm[f]. 1n

The two procedures of relation (17) are diagrammed in Figure 2.

As a trial, let us assume that R and S did commute, so that the
two nodes in the upper righthand corner of Figure 2(a) coincide.

If this were true, and RS did produce the same result as SR, then
Figure 2(b) shows that there can be two ways by which Sm[f] could
be carried into RS[f]:

SnSm(f] = nf%Sm[f] i (18)

~

where R is the m-transform equivalent of S, as shown in Figure 1.
We can consider Sm, which is map m followed by operation S, to

be an equivalent procedure P, where,
P = Sm. (19)

In Figure 2(b) the lower righthand node can be reached by

two paths, leading to the equivalence relation,
SmS = RSm , (20)
or

PS = RP. (21)
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But, from the definition of R, S followed by m produces the same

result as m followed by R, as,
mS = Rm. (22)

Comparing relations (19), (21) and (22) it follows that that
original assumption that RS produces the same result as SR cannot

be true. Hence,
RS - SR = [R,S] # 0. (23)

The noncommutation of alternative operational procedures, when
applied in the same frame of reference, results from the distinction
between the procedures of mapping between alternative forms, as
expressed by relations (1) and (3), and the procedure of operation.
Operational procedures that do not jointly fall under the limitations
of relation (14) are allowed to commute. Thus, differentiation
commutes with convolution, but differentiation cannot commute
with multiplication by a monomial (relation (15)), nor can
convolution commute with its Fourier transform equivalent of
functional multiplication. Perhaps of greatest significance is
the fact that the foregoing development was presented without
limitation to the type of alternative map m. Noncommutativity
is not a unique property of the Fourier transform, nor does its
appearance in quantum mechanics need to signify anything more than

that the associated properties are alternatives as defined herein.
CONCLUSION

The concept of alternatives bringé a simple geometric
interpretation to the mathematical formalism which lies at the
foundation of quantum mechanics. None of the formalism has

been challenged or replaced; nor has any doubt been cast on
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the results which derive from that formalism. What this concept
brings is the interpretation that the quantum mechanics properties
of momentum and position are correlated for the simple reason
that they both represent the same thing and, hence, are nothing
more than different versions of each other. Because these
particular alternatives are linked by a local to global map, combining
them in a' common description must result in mutual spreading
which gives the appearance of complementarity whenver coprecision
is attempted.

This result is in no way dependent on quantum mechanics
itself but comes from an investigation of the formal nature of
the mathematical symbolism which is used to model quantum
mechanics entities. A complex-valued functional representation,
which is of class L2? over the whole of its particular frame of
reference, can be recast into an alternative form under procedures
which maintain the net L2? summability over the whole of the new
frame of reference. If total content, in the sense of net Lebesgue
summation, is maintained, then these different ways of describing
the same thing are alternatives under L2. The procedure by which
one such alternative may be mapped into another such alternative
must preserve L2? everywhere except over sets of Lebesgue measure
zero. The Fourier transform on L? is such a map. Thus entities
which are joined by Fourier transformation under conditions of
equal square summability are L? alternatives. One might not
necessarily begin an analysis by considering that paired functional
representations are alternatives, but the moment they are expressed
through an L? preserving map, such as the Fourier transform, they
must be interpreted as such.

Concern about interpretation of the indeterminacy relations
should begin with the equations which lead up to them, not with

trying to ask what they mean as a form consisting of a resultant
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product of dispersions. By looking at the meaning of the equations
which lead up to the indeterminacy result we also see that the
celebrated noncommuting of paired operators is completely consistent
with the concept that the entities which these operators represent
are alternatives.

I offer these results, from quite a different field of application,
for the interesting interpretation which they can bring to the
physics of the microcosm. Space does not permit discussion of the
possibilities here, but it must be evident that one should look
backward at the procedures which led up the the formulation of
momentum and position as alternatives, as well as look forward
to reinterpret the philosophical implications with regard to

completeness and the influence of the human observer.
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Figure 1. Mapping diagram showing the relationship between
operations (capital letters and lateral displacement) which act on
representational forms to create a new form within the same frame
of reference; and alternative maps (lower case and vertical
displacement) which transform to a new frame of reference. Fach
node is a representational form, with the direction of arrows
indicating forward procedures; inverse procedures act contrary

to the direction of arrovs. Nodes at the same vertical location
correspond to representational forms within the same frame of
reference, while nodes atthe same horizontal location correspond
to alternative representations of those above and below it.

In this example, operation S is the m-transform equivalent of

A
operation R and, in turn, R is the m-transform equivalent of S.
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Figure 2. Mapping diagrams for sequential operations R and S applied
to a functional representation f, where S is the m-transform equivalent
of R: (a) Showing paths by which the intermediate stages of mS[f] and
SmLf] are carried into RS[’f]and SR[f] , respectively. (b) Showing
the relationship with operation R that would exist if the nodes SR]'f]
and RS[f} coincide; since the state of the lower righthand node would
violate the definition of ﬁ, the upper righthand nodes cannot coincide,

with the meaning that R and S cannot commute.
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Figure 1. Mapping diagram showing the relationship between
operations (capital letters and lateral displacement) which act on
representational forms to create a new form within the same frame
of reference; and alternafive maps (lower case and vertical
displacement) which transform to a new frame of reference. Fach
node is a representational form, with the direction of arrows
indicating forward procedures; inverse procedures act contrary

to the direction of arrows. Nodes at the same vertical location
. correspond to representational forms within the same frame of
reference, while nodes atthe same horizontal location correspond
to alternative representations of those above and below it.

In this example, operation S is the m-transform equivalent of

a3
operation R and, in turn, R is the m-transform equivalent of S.
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Figure 2. Mapping diagrams for sequential operations R and S applied
to a functional representation f, where S is the m-transform equivalent
of R: (a) Showing paths by which the intermediate stages of mS[f] and
Sm[f} are’ carried into RS[’f]andASR[f] , respectively. (b) Showing

the relationship with operation R that would exist if the nodes SRI;f]
and RS[fl coincide; since the state of the lower righthand node would

violate the definition of ﬁ, the upper righthand nodes cannot coincide,

with the meaning that R and S cannot commute.
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