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Abstract. The process of storing energy under equilibrium
conditions loses work that could have been obtained directly from the
source of energy. This is independent of the form of the energy and
can be extended to the analysis of situations otherwise difficult to
formulate in a common description, such as multiple energy conversions

involving solar, electrical, chemical, and mechanical storage.
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Conservation of total energy is a basic principle of physics for which
no counterexample has ever been observed. The present analytic
treatment of energy related phenomena uses terminology derived from
what are called intensive and extensive parameters (1). Such
parmeters do not themselves derive from the conservation of energy but
are assembled in any particular energy related description in such a way
as to be consistent with this conservation (2). This terminology, while
useful in describing energy related phenomena, makes it difficult to
identify general conditions which the principle of conservation of energy
may impose on our observations of such phenomena. The theory presented
in this correspondence starts from the principle of conservation of energy
and develops the concept of a generalized frame of reference from this
conservation; then conditions are developed for descriptions made in
such a frame of reference. It will be shown that this leads to the result
that it takes energy to store energy. Specifically it will be shown that
if a linear storage reservoir is connected to a source of energy and
allowed to come 1;0 equilibrium with that source, then the total amount
of stored energy capable of performing work is half the amount

extracted by the reservoir from the source.
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If there is a finite scalar entity E, identified as total energy, which
is to remain invariant when all aspects of a process are considered over
some frame of reference s, then we can postulate the existence of a total
energy density E(s) such that the net sum of this density over all values
of this frame of reference is equal to the total energy. This can be

expressed as,

JE(s)ds = E. (D
s

The set of all frames of reference s for which this invariance holds
will be defined as generalized coordinates of energy measure. When
energy representations ingeneralized coordinates s; are mapped to energy
representations in generalized coordinates s]. under conditions of

conservation of total energy E, then

[E(spas; = fE(sj)dsJ. = E. (2)
S. S.
1 J
As it stands, this expression is of little utiiity, but if we further
define a new complex entity h(s), the square of whose rﬁagnitude is
equal to E(s) , then we can cast relation (1) into a form that is known

to be of use in descriptions of energy related events. Defining

h(s) = f(s) + ig(s), (3)
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we have,
[Ih(s)|?ds = E. (4)
S

Since E is finite, h(s) is square integrable, and consequently will be of
class L? if ds is the Lebesgue measure of the frame of reference s (3).

The additional geometric structure imposed by relation (4) involves
a linear scaling relationship between total energy content and the magnitude
squared of h(s). While this restricts our considerations to those frames
of reference in which this condition prevails, it does not significantly
reduce the usefulness of the approach since the application of descriptions
of Lebesgue square integrability is well known both in classic physics (4)
and in quantum physies (5). Thus we may make use of the extensive
mathematical literature concerning linear spaces of class L2. Of particular
benefit is a theorem due to Titchmarsh which identifies the necessary and
sufficient condition under which a complex h(s) will be analytic and of
class L% (6). The condition is that f(s) and g(s) be conjugate functions
related to each other through the Hilbert transform.

The Hilbert transform is a mapping relationship that appears in several
.forms in our existing analysis. It can be shown to derive from Cauchy's
integral formula (7) and appears as the so-called dispersion relations
of systems .expressed in coordinates of angular frequency (8). This
brings out the interesting result that causality is imposed on any linear

frame of reference identified with the constancy of total energy.
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The Hilbert transform is of strong L% type (9) (10), which means that

not only is

|lh(s)|2 = [£(s)]2 + [g(s)]2, (5)
but that

Jlf(s)|?ds = [|g(s)]%ds (6)
s s

everywhere except over sets of Lebesgue measure zero. The result of
this is that when we impose L2 structure on our analysis the expression

which is identified as total energy density is partitioned into two terms,

E(s) = V(s) + T(s),
where
E(s) = |h(s)|?

V(s) = [f(s)]?
T(s) = [g(s)]2. : (D

A further result is that if we integrate over the whole of space
s in order to evaluate the scalar partitions of E which is imposed by

this additional structuring, then,
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E = Vv + T
and
V = T = 3E, (8)
where
V = [V(s)ds

S
T = [T(s)ds.

S

Relation (7) indicates that a linear complex representation is sufficient
to identify energy density and its partitioning into two components, and
relation (8) identifies the net available work of each component as half
the total energy. While the frame of reference s derives from the
constancy of total energy, we can recognize the significance of V(s) and T(s)
by identifying their counterpart in simple mechanical or electrical situations.
An earlier paper which derived these equations identified V(s) and T(s)
as potential energy density and kinetic energy density respectively (11).
The terminology must be taken in context with the frame of reference s,
since V(s) and T(s) are both expressed in the same set of coordinates.

If, for example, s is a frame of reference identified uniquely with

potential energy, then T(s) is the way kinetic energy density is
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manifest in this potential energy frame of reference. The earlier paper
went into a considerable discussion of relation (7) and will not be further
elaborated in this correspondence, but the extended value of relation (8)
was not fully appreciated when the paper was first published. New
considerations concerning relation (8) and its significance to energy
storage are presented here.

Relation (8) indicates that the storage of energy, if allowed to go to
completion in a frame of reference identified with potential energy, leaves
a value V which is half the total energy giving rise to V. The other half
appears as a term identified as T. Work T is required to establish the
storage configuration V. A literal interpretation of this relationship is
that it takes energy to store energy. In order to divert energy to a
stored form it is necessary to have an agent of energy transport, and this
agent exacts an energy toll.

Equal partitioning into the scalar terms V and T depends upon
integration over the whole of s. Integration of V(s) and T(s) over
part of s need not result in equal partitioning. This is particularly
important when considering the consequences of using an energy
reservoir between an energy source and an energy sink. If an energy
reservoir is cycled between operations of depletion into a sink and
equilibrium restoration from a source, then the depth of depletion
determines the net efficiency of energy storage between source and
sink. Total depletion of the reservoir results in a 50% conversion

efficiency, according to relation (8). It is possible to raise the
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efficiency of transfer by partial depletion of the reservoir followed by
replenishment for subsequent use, an operation known as shallow cycling,
but the maximum efficiency for any finite depletion can never achieve the
ideal 1005 due to the residual component of T left by integrating over a
finite interval.

Relation (4) is based on linear considerations and does not hold in
nonlinear systems. However, many nonlinear systems can be represented
by the combination of some equivalent linear component of energy density
plus a nonnegative component that accounts for the net behavior.
Although the efficiency of energy storage for such a combined nonlinear
system may either be much higher or lower than that of a purely linear
system, the existence of the linear component will limit the maximum
achievable storage efficiency to a value less than 100%.

An example of the equal partitioning relationship in a linear system
can be found in the case of charging a capacitor. The maximum
efficiency with which a linear capacitor may be charged from a perfect
battery is 50%. If an initially uncharged capacitor C is connected to
a potential v and allowed to come to equilibrium, the stored energy in
the capacitor is ZCv? while the work done by the battery is Cv2.

This condifcion prevails even if a resistor is used to restrict the maximum
surge of current. One always finds that #Cv? is dissipated in the

resistor, even if its value is allowed to go to zero.
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The traditional explanation of this apparent paradox puts the missing
half of the energy in the radiation resistance offered by the connecting
wires, although the reason why such perfect partitioning takes place
independent of wire configuration or dissipating resistor is not suggested.
Since this is an equilibrium condition, relation (8) prevails, and we
should expect half the energy to be stored in the capacitor. A resistor,
or any such component in series with the capacitor, provides the second
part of the analytic complex expression, relation (3), necessary to define
the finite invariant entity we call energy.

Another example of relation (8) can be found in the case of a parallel
sided gravity reservoir whose cross section area is constant with height.
If fluid is transported under constant pressure into such a storage
reservoir, equilibrium will be achieved for a height of fluid whose gravity
pressure equals that of the source. Since the stored pressure is
proportional to the height of the fluid remaining in the reservoir, the
total amount of work which can be obtained from the reservoir fluid is
half that which was required to transport the fluid into the reservoir
at constant preésure.

Nonlinear capacitors, whose capacitance is a function of voltage, or
sloping sided gravity reservoirs, whose cross section area is a function
of the height of the fluid, may have storage efficiencies other than 505%.
Simple calcﬁlation shows that the highest efficiencies are obtained for
nonlinear configurations that produce depletion forces which vary in the

same manner as the forces exerted during storage from the initial energy
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source. In the case of nonlinear capacitors, for example, the highest
charge-discharge efficiency for constant resistance loads will occur when
the terminal voltage remains constant during discharge, then abruptly
drops to zero at total depletion. = This is also the ideal charge and
discharge terminal voltage characteristics of a storage battery if such
a perfect nonlinear capacitor can be considered equivalent to an ideal
lossless storage battery. An energy loss must take place when the
storage battery departs from this nonlinear property and exhibits an
equivalent linear capacitor component in which terminal voltage drops
during depletion. Discharge rate is an important parameter
determining this equivalent component in practical storage batteries.

Relation (8) warns us that we must eliminate as many stages of
intermediate storage as possible if we wish to make maximum use of
energy from any finite source. If we cannot eliminate a stage of
intermediate storage then we should avoid drawing a significant fraction
of the total stored energy from that stage prior to replenishment from
its source of energy. We must avoid what in engineering terminology
is called deep cycling.

Two examples of the economic application of these general energy
relations are as follows: first, if solar electric converters are used to
augment a fossil fuel electric power network, less fuel may be consumed
if all the power from the solar converters is put on the net during
daylight hours, with the fossil fuel generators throttled down during

daylight and taking the full load at night, than if the net draws energy
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from storage elements charged by the solar conversion devices.
Second, less fossil fuel may be consumed in powering personnal automobiles
if that fuel is burned directly in the auto, than if it were burned in a
central electric power plant which is used to recharge battery powered
automobiles. If battery powered automobiles are considered desirable
from additional factors such as lowered pollution, then hybrid vehicles
designed for shallow cycling of the storage batteries woule seem to
represent an energy-efficient configuration.

I thank Professor Leverett Davis, Jr. of the California Institute
of Technology and Dr. William Whitney of the Jet Propulsion
Laboratory for discussion and helpful criticism in the preparation of

this correspondence.
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